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An Euler–Bernoulli beam carrying concentrated masses is considered to be a beam–mass
system. The beam is simply supported at both ends. The non-linear equations of motion are
derived including stretching due to immovable end conditions. The stretching introduces
cubic non-linearities into the equations. Forcing and damping terms are also included.
Exact solutions for the natural frequencies are given for the linear problem. For the non-
linear problem, an approximate solution using a perturbation method is searched. Non-
linear terms of the perturbation series appear as corrections to the linear problem.
Amplitude and phase modulation equations are obtained. Non-linear free and forced
vibrations are investigated in detail. The effect of the positions, magnitudes and number of
the masses are investigated.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Non-linear vibrations of a beam having concentrated masses are extensively studied.
Beam–mass systems are frequently used as design models in engineering. Exact and
approximate analyses have been carried out for calculating the natural frequencies of a
beam–mass system under simple supported condition [1–9]. One type of non-linearity,
which arises when immovable end conditions are used, is due to the stretching of the beam
itself. The non-linear beam vibration studied up to 1979, have been reviewed by Nayfeh
and Mook [10]. More recent works on this type are found in references [11–18]. For
slightly curved beams with stretching, one may refer to references [19, 20]. It is well known
that the analysis of forced vibration of the most simple structural model, in a non-linear
way, can reveal non-periodical behaviour, so that even chaotic motions reoccur regularly
but not exactly: a small perturbation in initial conditions changes the solution for the so-
called sensitivity to initial conditions.

In this study, an Euler–Bernoulli beam carrying concentrated masses is considered as a
beam–mass system under simply supported end conditions. Exact natural frequencies are
calculated for locations, magnitudes and the number of masses. The method of multiple
scales, a perturbation technique, is used to solve the non-linear equations approximately.
The amplitude and phase modulation equations are determined from the non-linear
analysis. Free and forced vibrations with damping are investigated in detail. The
effects of mid-plane stretching on the beam vibrations are studied for different control
parameters.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



E. ÖZKAYA414
2. EQUATION OF MOTION

For the system show in Figure 1, the Lagrangian can be written as

£ ¼ 1=2
Xn

m¼0

Z xmþ1

xm

rA ’wwn2
mþ1 dxn þ 1=2

Xn

m¼1

Mm ’wwn2
m xm; tnð Þ

� 1=2
Xn

m¼0

Z xmþ1

xm

EIw00n2
mþ1 dxn � 1=2

Xn

m¼0

Z xmþ1

xm

EA u0n
mþ1 þ 1=2w0n2

mþ1

� �2
dxn;

x0 ¼ 0; xnþ1 ¼ L; ð1Þ

where L is the length, r is the density, A is the cross-sectional area, E is Young’s modulus,
I is the second moment of area of the cross-section with respect to the neutral axis, n is the
number of concentrated masses, w is the transverse displacement, (�) and (0) denote
differentiations with respect to time tn and the spatial variable xn respectively. The terms in
equation (1) are the kinetic energies due to transverse motion of the beam and masses, and
elastic energies due to bending and stretching of the beam respectively.

Invoking Hamilton’s principle,

d
Z t2

t1

£ dtn ¼ 0 ð2Þ

and substituting the Lagrangian from equation (1), performing the necessary algebra and
eliminating the axial displacements between equations, one finally obtain the following
non-linear coupled integro-differential equations of motion:

rA .wwn

mþ1 þ EIwivn
mþ1 ¼

EA

2L

Xn

r¼0

Z xrþ1

xr

w0n2
rþ1 dxn

" #
w00n

mþ1

� mn ’wwn

mþ1 þ Fn

mþ1 cosO
ntn; m ¼ 0; 1; 2; . . . ; n: ð3Þ

There are (n+1) equations in equation (3). Note that the viscous damping coefficient mn;
and external excitation with amplitude Fn

mþ1 and frequency On are added to the equations.
The boundary conditions can be written for this equation as follows:

wn

1 0; tnð Þ ¼ wn0
1 0; tnð Þ ¼ 0; wn

nþ1 L; tnð Þ ¼ wn00
nþ1 L; tnð Þ ¼ 0; ð4Þ

wn

p xp; tn
� �

¼ wn

pþ1 xp; tn
� �

; wn0
p xr; tnð Þ ¼ wn0

pþ1 xp; tn
� �

; wn00
p xr; tnð Þ ¼ wn00

p xp; tn
� �

; ð5Þ

EIwn000
p xp; tn

� �
� EIwn000

pþ1 xp; tn
� �

� Mp .ww
n

p xp; tn
� �

¼ 0; p ¼ 1; 2; . . . n: ð6Þ
Figure 1. Beam–mass system with simple end conditions.
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The equations are made dimensionless using the following definitions:

x ¼ xn=L; wp ¼ wn

p=R; Zp ¼ xp=L; ð7Þ

t ¼ 1=L2
� �

EI=rAð Þ1=2tn; ap ¼ Mp=rAL; ð8Þ
where R is the radius of gyration of the beam cross-section with respect to the neural axis
and ap is the ratios of the concentrated masses to the beam mass. Substituting the
dimensionless parameters into the equations of motion yield

.wwmþ1 þ wiv
mþ1 ¼

1

2

Xn

r¼0

Z Zrþ1

Zr

w02
rþ1 dx

" #
w00

mþ1 � 2 %mm ’wwmþ1 þ %FF mþ1 cosOt; ð9Þ

w1 0; tð Þ ¼ w00
1 0; tð Þ ¼ 0; wnþ1 1; tð Þ ¼ w00

nþ1 1; tð Þ ¼ 0; ð10Þ

wp Zp; t
� �

¼ wpþ1 Zp; t
� �

; w0
p Zp; t
� �

¼ w0
pþ1 Zp; t

� �
; w00

p Zp; t
� �

¼ w00
pþ1 Zp; t

� �
; ð11Þ

w000
p Zp; t
� �

� w000
pþ1 Zp; t

� �
� ap .wwp Zp; t

� �
¼ 0: ð12Þ

In equation (9)

Z0 ¼ 0; Znþ1 ¼ 1: ð13Þ
The solutions and results for different parameters will be presented in the next section.

3. APPROXIMATE ANALYTICAL SOLUTION

In this section, approximate solutions of equations (9)–(13) will be searched with the
boundary conditions. The method of multiple scales is applied to partial differential
equation systems and boundary conditions directly. Due to the absence of quadratic non-
linearities, one assumes expansions of the forms

w mþ1ð Þ x; t; eð Þ ¼ ew mþ1ð Þ1 x;T0;T2ð Þ þ e3w mþ1ð Þ3 x;T0;T2ð Þ; ð14Þ
where e is a small book-keeping parameter artificially inserted into the equations. This
parameter can be taken to be 1 at the end upon keeping in mind, however, that the
deflections are small. Therefore, one investigates a weakly non-linear system. T0 ¼ t and
T2 ¼ e2t are the fast and slow time scales. Now consider only the primary resonance case
and hence, the forcing and damping terms are ordered so that they counter the effect of the
non-linear terms

%mm ¼ e2m; %FFmþ1 ¼ e3Fmþ1: ð15Þ
The time derivatives are written as

ð:Þ ¼ D0 þ e2D2; ð:Þ ¼ D2
0 þ 2eD0D2; Dn ¼ @=@Tn: ð16Þ

Inserting equation (14) into equations (9)–(13) and separating, one obtains
Order (e):

D2
0w mþ1ð Þ1 þ wiv

mþ1ð Þ1 ¼ 0; ð17Þ

w11ð0Þ ¼ w00
11ð0Þ ¼ 0; wðnþ1Þ1ð1Þ ¼ w00

ðnþ1Þ1ð1Þ ¼ 0; ð18Þ

wp1ðZpÞ ¼ wðpþ1Þ1ðZpÞ; w0
p1ðZpÞ ¼ w0

ðpþ1Þ1ðZpÞ; w00
p1ðZpÞ ¼ w00

ðpþ1Þ1ðZpÞ; ð19Þ

w000
p1ðZpÞ � w000

ðpþ1Þ1ðZpÞ � apD2
0wp1ðZpÞ ¼ 0: ð20Þ
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Order (e3):

D2
0w mþ1ð Þ3 þ wiv

mþ1ð Þ3 ¼ � 2D0D2w mþ1ð Þ1 � 2mD0w mþ1ð Þ1

þ 1

2

Xn

r¼0

Z Zrþ1

Zr

w02
rþ1ð Þ1 dx

" #
w00

mþ1ð Þ1 þ %FF mþ1ð Þ cosOT0; ð21Þ

w13 0ð Þ ¼ w00
13 0ð Þ ¼ 0; w nþ1ð Þ3 1ð Þ ¼ w00

nþ1ð Þ3 1ð Þ ¼ 0; ð22Þ

wp3 Zp

� �
¼ w pþ1ð Þ3 Zp

� �
; w0

p3 Zp

� �
¼ w0

pþ1ð Þ3 Zp

� �
; w00

p3 Zp

� �
¼ w00

ðpþ1Þ3 Zp

� �
; ð23Þ

w000
p3 Zp

� �
� w000

pþ1ð Þ3 Zp

� �
� apD2

0wp3 Zp

� �
� 2apD0D2wp1 Zp

� �
¼ 0: ð24Þ

3.1. EXACT SOLUTION TO THE LINEAR PROBLEM

The linear problem is governed by equations (17)–(20). Assuming solutions of the
form

wp1 ¼ A T2ð ÞeioT0 þ cc
	 


Yp xð Þ; ð25Þ

where cc stands for complex conjugate and substituting into equations (17)–(20), one
obtains

Y iv
mþ1ð Þ � o2Y mþ1ð Þ ¼ 0; ð26Þ

Y1 0ð Þ ¼ Y 00
1 0ð Þ ¼ 0; Y nþ1ð Þ 1ð Þ ¼ Y 00

nþ1ð Þ 1ð Þ ¼ 0; ð27Þ

YpðZpÞ ¼ Y pþ1ð ÞðZpÞ; Y 0
pðZpÞ ¼ Y 0

pþ1ð ÞðZpÞ; Y 00
p ðZpÞ ¼ Y 00

pþ1ð ÞðZpÞ; ð28Þ

Y 000
p ðZpÞ � Y 000

pþ1ð ÞðZpÞ þ apo2YpðZpÞ ¼ 0: ð29Þ

Solving equations (26)–(29) exactly for different concentrate masses yield natural
frequencies o: For one masses, the frequency equation is

2 tanh b tan bþ abftanh b sin bZðsin bZ� tan b cos bZÞ

þ tan b sinh bZðtanh b cosh bZ� sinh bZÞg ¼ 0: ð30Þ

Natural frequency equation for one mass ratio was calculated by .OOzkaya et al. [14]. They
obtained the same frequency equation for one mass ratio. For two concentrated masses,
the frequency equation is

� 2a1a2b
2 cos b cosh bþ a1a2b

2 cos b� Z1bð Þ coshbþ a1a2b
2 cos b� 2Z2bð Þ cosh b

þ 2a1a2b
2 cos 1� Z1 � Z2ð Þb½ � cosh 1� Z1 � Z2ð Þb½ �

� a1a2b
2 cos 1þ Z1 � Z2ð Þb½ � cosh 1� Z1 � Z2ð Þb½ �

� 2a1a2b
2 cos 1� Z1 � Z2ð Þb½ � cosh 1þ Z1 � Z2ð Þb½ �
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þ 2a1a2b
2 cos 1þ Z1 � Z2ð Þb½ � cosh 1þ Z1 � Z2ð Þb½ �

þ a1a2b
2 cos b cosh b� 2Z1bð Þ � a1a2b

2 cos b� 2Z2bð Þ cosh b� 2Z1bð Þ
þ a1a2b

2 cos b cosh b� 2Z2bð Þ � a1a2b
2 cos b� 2Z1bð Þ cosh b� 2Z2bð Þ

� 4a1b cosh b sin b

� 4a2b cosh b sin bþ 4a1b cosh b� 2Z1bð Þsin bþ 4a2b cosh b� 2Z2bð Þ sin b

� 4a1b cos b sinh b� 4a2b cos b sinh bþ 4a1b cos b� 2Z1bð Þ sinh b

þ 4a2b cos b� 2Z2bð Þsinh b� 16 sin b sinh b� a1a2b
2 sin 1þ 2Z1 � 2Z2ð Þb½ � sinh b

� a1a2b
2 sin b� 2Z1bð Þsinh bþ a1a2b

2 sin b� 2Z2bð Þsinh b

þ a1a2b
2 sin b sinh 1þ 2Z1 � 2Z2ð Þb½ � þ a1a2b

2 sin b sinh b� 2Z1bð Þ
� a1a2b

2 sin b sinh b� 2Z2bð Þ ¼ 0; ð31Þ

where b ¼
ffiffiffiffi
o

p
: The transcendental equation is numerically solved for the first five modes.

Results are given in Table 1 for different mass ration. For each case, the natural
frequencies are listed for different ap (the ratio of the concentrated masses to the beam
mass) and Zp (the mass location parameter). Natural frequencies were also calculated for
three masses (see Table 2). The natural frequencies for various number of frequencies can
be calculated using equations (26)–(29).

3.2. NON-LINEAR PROBLEM

Solving order e3; one obtains the non-linear corrections to the problem. Because the
homogeneous equations (17)–(20) have a non-trivial solution, the non-homogeneous
problem (21)–(24) will have a solution only if a solvability condition is satisfied [21]. To
determine this condition, first separate the secular and non-secular terms by assuming a
Table 1

The first five natural frequencies for two masses with different mass ratios locations

a1 a2 Z1 Z2 o1 o2 o3 o4 o5

1 1 0�1 0�3 6�1182 26�506 55�4118 99�097 196�79
0�7 6�1834 22�5976 60�226 125�021 174�858

0�5 0�3 4�7846 19�8023 45�2524 95�2379 158�08
0�7 4�7297 25�1279 60�8832 141�289 183�11

10 0�1 0�3 2�5095 26�0754 51�0693 94�5054 194�767
0�7 2�5165 20�06 58�8238 124�285 168�185

0�5 0�3 2�4045 13�3671 44�7847 94�7519 158�08
0�7 2�3875 17�9251 59�5695 136�993 180�905

10 1 0�1 0�3 4�5140 18�5627 38�578 96�6938 195�72
0�7 4�6714 12�4294 50�9916 121�432 171�647

0�5 0�3 2�0861 15�9588 43�1699 91�6234 158�043
0�7 2�0777 22�0363 54�6468 140�866 179�431

10 0�1 0�3 2�3567 16�2569 29�9752 92�8631 193�92
0�7 2�41265 8�8503 48�9337 121�018 164�747

0�5 0�3 1�7707 6�5729 42�9421 94�6427 158�043
0�7 1�6769 9�8120 53�5165 136�535 177�62



Table 2

The first five natural frequencies for three masses with different mass ration and locations

a1 a2 a3 Z1 Z2 Z3 o1 o2 o3 o4 o5

1 1 1 0�1 0�4 0�8 5�1305 18�915 40�6683 101�949 193�298
1 1 10 0�1 0�4 0�8 3�0114 11�7311 39�4456 98�7132 193�01
1 10 1 0�1 0�4 0�8 2�1818 17�1861 37�3556 99�3226 189�777

10 1 1 0�1 0�4 0�8 4�1416 13�0206 25�9585 99�4389 186�121
10 10 10 0�1 0�4 0�8 1�8639 6�67504 14�1606 93�7742 181�624
1 1 1 0�2 0�5 0�7 4�4113 18�2005 39�1895 137�98 174�375
1 1 10 0�2 0�5 0�7 2�3503 13�4689 35�0008 134�77 171�032
1 10 1 0�2 0�5 0�7 2�0482 18�1854 29�3781 137�958 169�335

10 1 1 0�2 0�5 0�7 2�8578 10�7711 35�3795 137�274 172�9
10 10 10 0�2 0�5 0�7 1�5399 6�3834 13�5785 134�252 164�439
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solution of the from

wðmþ1Þ3 ¼ fðmþ1Þðx;T2ÞeioT0 þ Wðmþ1Þðx;T0;T2Þ þ cc: ð32Þ

Substituting this solution into equations (21)–(24), the terms producing secularities are
eliminated. Hence the part of the equation determining fðmþ1Þ is as follows:

fiv
mþ1ð Þ � o2f mþ1ð Þ ¼ � 2io A0 þ mAð ÞY mþ1ð Þ

þ 3=2ð ÞA2A
Xn

r¼0

Z Zrþ1

Zr

Y 02
rþ1 dx

" #
Y 00

p þ 1=2F mþ1ð Þe
isT2 ; ð33Þ

f1ð0Þ ¼ f00
1 ð0Þ ¼ 0; fðnþ1Þð1Þ ¼ f00

ðnþ1Þð1Þ ¼ 0; ð34Þ

fpðZpÞ ¼ fðpþ1ÞðZpÞ; f0
pðZpÞ ¼ f0

ðpþ1ÞðZpÞ; f00
p ðZpÞ ¼ f00

ðpþ1ÞðZpÞ; ð35Þ

f000
p ðZpÞ � f000

ðpþ1ÞðZpÞ þ apo2fpðZpÞ � 2apioA0Yp ¼ 0: ð36Þ

In obtaining these equations, one substitutes the first order solutions (25). One also
assumed that the external excitation frequency is close to one of the natural frequencies of
the system; that is,

O ¼ oþ e2s; ð37Þ

where s is a detuning parameter of order 1. After some algebraic manipulations, one
obtains the solvability condition for equations (33)–(36) as

2io A0 þ mAð Þ þ 3=2ð Þb2A2 %AA þ
Xn

r¼1

2arioA0Y 2
r Zrð Þ � 1=2ð ÞfeisT2 ¼ 0; ð38Þ

where the equations are normalized by requiringXn

r¼0

Z Zrþ1

Zr

Y 2
rþ1 dx ¼ 1: ð39Þ

The coefficients b and f in equation (38) are defined as

b ¼
Xn

r¼0

Z Zrþ1

Zr

Y 02
rþ1 dx; f ¼

Xn

r¼0

Z Zrþ1

Zr

Frþ1Yrþ1 dx: ð40Þ
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The complex amplitude A can be written in terms of a real amplitude a and a phase y

A ¼ ð1=2ÞaðT2ÞeiyT2 : ð41Þ
Substituting equation (41) into equation (38), and separating real and imaginary parts, one
obtains finally phase and modulation equations

oakg0 ¼ oask � 3
16

b2a3 þ 1

2
f cos g; oa0k ¼ �oma þ 1

2
f sin g; ð42; 43Þ

where k and g are defined as

k ¼ 1þ
Xn

r¼1

arY
2
r ðZrÞ; g ¼ sT2 � y: ð44; 45Þ

In this section amplitude and phase modulation equations are determined from the non-
linear analysis for several masses. If one mass has been investigated, same results would be
obtained with .OOzkaya et al. [14].

4. NUMERICAL RESULTS

Firstly, the linear natural frequencies for different mass number (n=2 and 3) for various
ap and Zp values are found and given in Table 1. Then, the non-linear frequencies for free
undamped vibrations are calculated. In equations (42) and (43), by taking m ¼ f ¼ s ¼ 0;
one obtains

a0 ¼ 0 and a ¼ a0ðconstantÞ: ð46Þ
Note that a0 is the steady state real amplitude of response. Hence, the non-linear
frequency is

onl ¼ oþ la2
0; ð47Þ

where

l ¼ 3

16

b2

ok
: ð48Þ

To this order of approximation, thus, the non-linear frequencies have a parabolic relation
with the maximum amplitude of vibration. l can be defined as the non-linear correction
coefficient. For different ap and Zp; the non-linear correction coefficients are listed in
Tables 3 and 4 for the first fundamental frequency corresponding to different masses
number. l is a measure of the effect of stretching. The non-linearities are of hardening
Table 3

The non-linear frequency correction coefficients for the beam with two masses (first mode)

a1 a2 Z1 Z2 l

1 1 0�1 0�7 1�145060
1 10 0�1 0�7 0�451715

10 1 0�1 0�7 0�836154
10 10 0�1 0�7 0�439536
1 1 0�5 0�3 0�912697
1 10 0�5 0�3 0�441390

10 1 0�5 0�3 0�390698
10 10 0�5 0�3 0�337414



Table 4

The non-linear frequency correction coefficients for the beam with three masses (first mode)

a1 a2 a3 Z1 Z2 Z3 l

1 1 1 0�1 0�4 0�8 0�959973
1 1 10 0�1 0�4 0�8 0�535832
1 10 1 0�1 0�4 0�8 0�416109

10 1 1 0�1 0�4 0�8 0�759183
10 10 10 0�1 0�4 0�8 0�348182
1 1 1 0�2 0�5 0�7 0�826093
1 1 10 0�2 0�5 0�7 0�427772
1 10 1 0�2 0�5 0�7 0�381032

10 1 1 0�2 0�5 0�7 0�514870
10 10 10 0�2 0�5 0�7 0�288347
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Figure 2. Non-linear frequency versus amplitude for two masses (first mode, a1 ¼ 1; a2 ¼ 1; Z1 ¼ 0�1;
Z2 ¼ 0�7).
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type. The effect of stretching decreases as ap increase for all masses number. In Figure 2–5,
the non-linear frequency–amplitude curves are drawn for different mass numbers,
locations and ratios. In Figures 2 and 3, the non-linear frequency–amplitude curves are
drawn for two concentrated mass numbers and different mass ratios. In Figures 4 and 5,
non-linear frequency–amplitude curves are drawn for three concentrated masses and
different mass ratios. As seen, an increase in concentrated masses decreases the linear and
non-linear frequencies.

One can now consider damping and external excitation case. In equations (42) and (43),
when the system reaches the steady state region, a0 and g0 vanish and hence one
obtains

s ¼ 3

16

a2b2

ok


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
*ff
2

4o2a2
� *mm

s
; ð49Þ

where

*ff ¼ f =k; *mm ¼ m=k: ð50Þ
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Figure 3. Non-linear frequency versus amplitude for two masses (first mode, a1 ¼ 10; a2 ¼ 10; Z1 ¼ 0�1;
Z2 ¼ 0�7).
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Figure 4. Non-linear frequency versus amplitude for three masses (first mode, a1 ¼ 1; a2 ¼ 1; a3 ¼ 1 Z1 ¼ 0�2;
Z2 ¼ 0�5; Z3 ¼ 0�7).
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Figure 5. Non-linear frequency versus amplitude for three masses (first mode, a1 ¼ 10; a2 ¼ 10; a3 ¼ 10;
Z1 ¼ 0�2; Z2 ¼ 0�5; Z2 ¼ 0�7).
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Figure 6. Frequency–response curves for two masses (first mode, a1 ¼ 1; a2 ¼ 1; Z1 ¼ 0�1; Z2 ¼ 0�7).
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Figure 7. Frequency–response curves for two masses (first mode, a1 ¼ 10; a2 ¼ 10; Z1 ¼ 0�1; Z2 ¼ 0�7).
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The detuning parameter shows the nearness of the external excitation frequency to the
natural frequency of system. Several figures can be drawn using equation (49). The
frequency–response curves are presented for two masses with ratios in Figures 6 and 7 and
for three masses with different ratios in Figures 8 and 9. As seen, an increase in
concentrated masses increase the maximum amplitude of vibration.

5. CONCLUDING REMARKS

The transverse vibrations of an Euler–Bernoulli beam carrying concentrated masses are
investigated. The beam is supported at both ends. The non-linear equations of motion
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Figure 8. Frequency–response curves for three masses (first mode, a1 ¼ 1; a2 ¼ 1; a3 ¼ 1; Z1 ¼ 0�2; Z2 ¼ 0�5;
Z2 ¼ 0�7).
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Figure 9. Frequency–response curves for three masses (first mode, a1 ¼ 10; a2 ¼ 10; a3 ¼ 10; Z1 ¼ 0�2;
Z2 ¼ 0�5; Z2 ¼ 0�7).
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including stretching due to immovable end conditions are derived. Forcing and damping
terms are added into the equations. Exact solutions for the natural frequencies are given
for the linear part of the problem. For the non-linear problem, approximate solutions
using perturbations are searched. Non-linear terms of the perturbation series appear
as corrections to linear problem. Non-linear free and forced vibrations are investigated
in detail. The effect of the positions, magnitudes and number of the masses are
determined.

As the mass ration is increased, the natural and non-linear frequencies decrease. One
can observe that the stretching causes a non-linearity of the hardening type. When the
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ratio mass is increased, the effect of stretching on the non-linear frequencies decreases for
all mass numbers. For forced and damped vibrations, since the non-linearity is of
hardening type, the frequency–response curves are bent to the right, causing an increase in
the multi–valued regions. When the mass ratio and mass number are increased, the multi-
valued regions and maximum amplitude increase.
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